

The Development of C₄ Rice: Current Progress and Future Challenges Susanne von Caemmerer *et al. Science* **336**, 1671 (2012); DOI: 10.1126/science.1220177

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of July 26, 2012):

Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/336/6089/1671.full.html

A list of selected additional articles on the Science Web sites **related to this article** can be found at: http://www.sciencemag.org/content/336/6089/1671.full.html#related

This article cites 11 articles, 8 of which can be accessed free: http://www.sciencemag.org/content/336/6089/1671.full.html#ref-list-1

This article appears in the following **subject collections:** Botany http://www.sciencemag.org/cgi/collection/botany

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2012 by the American Association for the Advancement of Science; all rights reserved. The title *Science* is a registered trademark of AAAS.

The Development of C₄ Rice: Current Progress and Future Challenges

Susanne von Caemmerer,¹* W. Paul Quick,² Robert T. Furbank³

Another "green revolution" is needed for crop yields to meet demands for food. The international C_4 Rice Consortium is working toward introducing a higher-capacity photosynthetic mechanism the C_4 pathway—into rice to increase yield. The goal is to identify the genes necessary to install C_4 photosynthesis in rice through different approaches, including genomic and transcriptional sequence comparisons and mutant screening.

s the world population races toward 10 billion, agricultural scientists are realizing that another "green revolution" is needed for crop yields to meet demands for food. In rice, yield potential is limited by the photosynthetic capacity of leaves that, as carbohydrate factories, are unable to fill the larger number of florets of modern rice plants. One potential solution is to introduce a higher-capacity photosynthetic mechanism-the C₄ pathway-into rice. This is the goal of researchers in the international C4 Rice Consortium: to identify and engineer the genes necessary to install C_4 photosynthesis in rice (1).

Rubisco, the primary CO₂-fixing enzyme in rice, is a poor catalyst of CO₂ at current atmospheric conditions. It has a tendency of confusing its substrate CO2 with the more abundant O2 as well as being a very slow catalyst of CO₂, turning over only once or twice per second. Rubisco's oxygenase activity requires the recycling of phosphoglycolate in the photorespiratory pathway, resulting in an energy cost and loss of previously fixed CO₂. Many photosynthetic organisms, including cyanobacteria, algae, and land plants, have developed active CO₂-concentrating mechanisms to overcome Rubisco's inefficiencies (2). Among land plants, this led to the development of C₄ photosynthesis, a biochemical CO2concentrating mechanism. C4 pho-

Fig. 1. (**A**) C_3 photosynthesis fixes atmospheric CO_2 into C_3 acids with Rubisco in single cells. (**C**) Two-cell C_4 photosynthesis requires spatial separation of fixation of atmospheric CO_2 into C_4 acids and the donation of CO_2 from these C_4 acids to Rubisco. Also shown are light microscopy images of transverse sections of leaves of (**B**) rice, a C_3 plant, and (**D**) sorghum, a C_4 plant. The rice section shows vascular bundles with few chloroplasts and large numbers of mesophyll cells between the vascular bundles typical for C_3 species. The sorghum leaf section shows chloroplasts in bundle sheath and only two or three mesophyll cells in between the vascular tissue typical of a C_4 species.

in another type of specialized tissue, the bundle sheath cells. This process elevates the CO_2 concentration in the bundle sheath and inhibits Rubisco oxygenase activity, allowing Rubisco to operate close to its maximal rate (Fig. 1). In comparison with C_3 crops such as rice, C_4 crops (such as maize and sorghum) have higher yields and increased water- and nitrogen-use efficiency (1, 4).

Building the C₄ Machinery

In an evolutionary context, the transition from C_3 to C_4 photosynthesis has occurred independently in more than 60 different plant taxa (3). Genomic and transcriptional sequence comparisons of cell-

Mesophyll cells

*To whom correspondence should be addressed. E-mail: susanne.caemmerer@anu.edu.au

¹Research School of Biology, Australian National University, Canberra, ACT 0200, Australia. ²International Rice Research

Institute, Los Banos, Philippines, and University of Sheffield,

specific and leaf-developmental gradient transcription profiles between closely related C_3 and C_4 species are being used to identify C_4 -specific regulatory genes (4). Combining this information in parallel with screens of mutagenized C_4 *Sorghum bicolor* and *Setaria viridis* along with activation-tagged rice populations hopefully will

Bundle sheath cells

SPECIALSECTION

tosynthesis arose multiple times in the past 60 million years in warm semi-arid regions, with early occurrences coinciding with low atmospheric CO_2 in the late Oligocene (3). During C_4 photosynthesis, CO_2 is fixed within specialized leaf tissues known as mesophyll cells to produce C_4 acids, which diffuse to and are decarboxylated

Sheffield S10 2TN, UK. ³High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Canberra, ACT 2601, Australia. *To whom correspondence should be addressed. E-mail:

Plant Metabolism

Fig. 2. (**A**) Modeled changes in CO_2 assimilation rate in response to changes in leaf intercellular CO_2 partial pressure for C_3 and C_4 photosynthesis and for a hypothetical C_4 rice. Curves 1, 2, and 4 have Rubisco levels typically found in a C_4 leaf (10 µmol m⁻² catalytic Rubisco sites). Curve 3 shows a typical response for C_3 leaves with three times the Rubisco level of C_4 leaves. Curve 1 shows the response of a C_4 leaf with C_4 Rubisco kinetic properties. Curve 2 models how a C_4 leaf with C_3 Rubisco kinetic properties would respond (a hypothetical C_4 rice with C_3 Rubisco kinetics). The comparison of these two

curves shows the increase in CO_2 assimilation rate achieved with C_4 compared with C_3 Rubisco kinetic properties within a functional C_4 mechanism. Arrows to curves 1 and 3 show intercellular CO_2 partial pressures typical at current ambient CO_2 partial pressures for C_4 and C_3 photosynthesis. To generate the curves, model equations were taken from (11) and comparative Rubisco kinetic constants from (12). (**B**) Growth of 21-day-old rice and *S. viridis* seedlings at different ambient CO_2 concentrations ranging from 30 to 800 parts per million.

reveal candidate genes in the C_3 -to- C_4 switch that can be tested in transgenic rice and *S. viridis* (5). Because C_4 plants can carry out net CO_2 assimilation at very low CO_2 levels whereas C_3 plants cannot (Fig. 2), we can use growth screens to identify gain of function in activation-tagged rice mutants and loss of function in *S. viridis* mutants (Fig. 2). We are also using the fact that C_4 photosynthesis imparts a distinct carbon isotope signature on dry matter (6) in a loss-of-function screen for C_4 mutants.

A subset of genes required for the major biochemical components and metabolite transporters involved in the C4 pathway have been cloned and coupled to suitable promoters to give cellspecific expression in rice (7). Attempts to install C₄ photosynthesis in plants lacking the appropriate anatomy show that a biochemical approach alone will not be enough (8). Bundle sheath cells in rice are smaller than in C₄ plants and have less chloroplasts, and there are a large number of mesophyll cells between vascular bundles (Fig. 1) (4). Promising mutants have been identified in rice that show reduced vein spacing. Combined with studies of sorghum, we are optimistic that we will be able to identify the genes controlling this aspect of anatomy (4, 7).

Lessons Learned and Future Challenges

Although C₄ leaves have close veins and high rates of photosynthesis, C₄ photosynthesis is also

naturally supported around widely spaced veins in maize husk tissue, albeit at lower rates (6). Thus, a prototype C4 rice may be achievable with a subset of C4 genes, but a "good" C4 rice will require substantial fine tuning of biochemistry and anatomy. Particularly intriguing is the need for additional metabolite transport across membranes of organelles in C₄ photosynthesis (4). A functional C₄-concentrating mechanism in rice would allow for an approximately two-thirds reduction in Rubisco levels, relative to wild-type rice, but Rubisco would be sequestered in bundle sheath cells and ideally have a greater catalytic turnover rate (Fig. 2) (2). Antisense gene suppression of key photosynthetic enzymes has illuminated C₄ metabolism and engineering strategies, including the surprising find that phosphorylation of phosphoenolpyruvate (PEP) carboxylase by the regulatory enzyme PEP carboxylase phosphokinase is not needed for C_4 function (9). With the adoption of the C4 model plant S. viridiswith its short life cycle, small stature, and genome size-along with advances in efficient transformation, we anticipate that much more will soon be learned (5). We expect to have a C_4 rice prototype within 3 years. However, we estimate that another 15 years of research are required for optimization of the phenotype and field testing for C₄ rice to become ready for cultivation in farmers' fields.

Norman Borlaug's green revolution was based on just a handful of genes (10). However, the need for even greater food plant production looms. The promise of C_4 rice has resulted in one of the largest consortia of plant biologists pursuing a common goal. We optimistically take on this challenge, anticipating that advances in our understanding of plant metabolism, and C_3 and C_4 photosynthesis in particular, will better serve humanity in years to come.

References and Notes

- J. M. Hibberd, J. E. Sheehy, J. A. Langdale, Curr. Opin. Plant Biol. 11, 228 (2008).
- 2. M. R. Badger et al., Can. J. Bot. 76, 1052 (1998).
- R. F. Sage, P. A. Christin, E. J. Edwards, J. Exp. Bot. 62, 3155 (2011).
- 4. J. A. Langdale, Plant Cell 23, 3879 (2011).
- 5. T. P. Brutnell et al., Plant Cell 22, 2537 (2010).
- 6. J. J. L. Pengelly et al., Plant Physiol. 156, 503
 - (2011).
- 7. K. Kajala et al., J. Exp. Bot. 62, 3001 (2011).
- M. Miyao, C. Masumoto, S. Miyazawa, H. Fukayama, J. Exp. Bot. 62, 3021 (2011).
- T. Furumoto, K. Izui, V. Quinn, R. T. Furbank,
 S. von Caemmerer, *Plant Physiol.* 144, 1936 (2007).
- 10. N. Borlaug, Science 318, 359 (2007).
- S. von Caemmerer, Biochemical Models of Leaf Photosynthesis, vol. 2, Techniques in Plant Sciences (CSIRO Publishing, Collingwood, Australia, 2000).
- A. B. Cousins, O. Ghannoum, S. von Caemmerer, M. R. Badger, *Plant Cell Environ.* 33, 444 (2010).

Acknowledgments: This work was supported by the Bill and Melinda Gates Foundation. We are thankful for the scientific contributions of all the members of the C_4 Rice Consortium.

10.1126/science.1220177